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Stable populations and Hardy‑Weinberg 
equilibrium
Alan E. Stark1,2*    

Abstract 

The conditions on the mating matrix associated with a stable equilibrium are specified for an autosomal locus with 
five alleles. This points the way to the maintenance of Hardy-Weinberg proportions with non-random mating. The 
myth of random mating is exposed.
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Introduction
Crow [1] explains the importance of the Hardy-Weinberg 
principle for population genetical analysis. His final sen-
tence is ‘In this issue of GENETICS, C. C. Li shows that 
random mating is a sufficient, not a necessary condition 
for H-W ratios.’ Li [2] coined the term ‘pseudo-random 
mating’ to apply to his model which demonstrated that 
Hardy-Weinberg proportions can be maintained with 
non-random mating for an autosomal locus with two 
alleles. This fact is implicit in a formula given by Stark [3], 
as is shown below.

Crow (1999), in discussing the origins of the Hardy-
Weinberg law, reproduces the argument of Hardy (1908), 
including Hardy’s question: ‘in what circumstances will 
this distribution [ (p+ q)2 : 2(p+ q)(q + r) : (q + r)2 ] 
be the same as that in the generation before?’ [4, 5]. This 
paper considers the broader question as to what condi-
tions applied to the matrix of mating proportions ensure 
that the frequency distribution of the offspring is the 
same as that of the parents. The Hardy-Weinberg princi-
ple is just a special case and, using the broader conditions, 

the fact that Hardy-Weinberg proportions can be main-
tained with non-random mating can be justified.

Although the prominent population geneticist C. C. Li 
[2] showed for an autosomal locus with two alleles that 
Hardy-Weinberg proportions can be maintained with 
non-random mating, the genetics community has been 
slow to acknowledge the fact. The explanation may be the 
apparent simplicity of the assumption of random mating 
which is usually made to explain the Hardy-Weinberg 
principle.

This paper concentrates on the maintenance of the gen-
otypic distribution. Stark [6] shows that Hardy-Weinberg 
proportions are attainable in one round of non-random 
mating. Stark [7] reviews some of the steps leading to 
both of these facets of the law.

Stark and Seneta [8] examine the elusive phrase ‘ran-
dom mating’ which comes up constantly when appeal is 
made to the Hardy-Weinberg law. Stark and Seneta [9] 
describe the fundamental contribution to genetics the-
ory, involving Hardy-Weinberg equilibrium, made by the 
Russian mathematician S. N. Bernstein.

We believe that, despite the fact that much has been 
written about the Hardy-Weinberg law, there is still 
something to be discovered. The topic is introduced 
through an autosomal locus with two alleles. This is fol-
lowed by a locus with 5 alleles, then by discussion.
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The matrix of mating proportions for 2 alleles
The features of the mating matrix can be illustrated by 
the case of an autosomal locus with 2 alleles A and B. 
The genotypes are AA, BB, and AB, which are numbered 
respectively 1, 2, and 3. There are 9 mating combinations 
and the proportions are arranged in a 3×3 matrix with 
elements cij, i,j = 1, 2, 3. The matrix is symmetric, that is 
cji = cij. Elements cij are non-negative and their sum is 1. 
The property that the parental genotype distribution is 
reproduced in the offspring is obtained by constructing 
a matrix with c33 = 4c12. Table  1 gives two examples in 
which the genotypic proportions of the parents are 2/9, 
3/9, and 4/9.

The proportion of AA offspring is

that is equal to the proportion of AA in parents. A corre-
sponding calculation leads to similar results for types BB 
and AB. Inspection of the examples in Table 1 shows that 
the constraint c33 = 4c12 is flexible, that is the same paren-
tal proportions can be reproduced with varying values. 
There is some freedom in varying c11 provided that other 
elements satisfy the row and column sums requirements 
and that of symmetry. But in general there is an uncount-
able number of possibilities.

The mating matrix for 5 alleles
When the number of alleles is increased the set of con-
straints on the elements of the mating matrix to ensure 
that the genotypic distribution of the parents is repro-
duced in the offspring is correspondingly enlarged. Stark 
[10] treats the case for 3 alleles and gives a numerical 
example of non-random mating with Hardy-Weinberg 
frequencies [10]. Stark [11] gives the case for 4 alleles.

When the number of alleles is k, the number of geno-
types is k(k + 1)/2. As will be seen below, among others, 
the set of constraints will involve terms containing diago-
nal elements ck+1,k+1 to ck(k+1)/2,k(k+1)/2 . This gives free-
dom to choose various sets of values of these elements. 
As noted above, this will create options for elements c11 
to ckk , provided that they satisfy the properties of the 
mating matrix.

c11 + c13 + c33/4 = c11 + c13 + c12

The constraints on the matrix of mating proportions 
for 5 alleles are the following:

The validity of the constraints can be tested by calculat-
ing offspring proportions and comparing them with the 
parental proportions. For example the AB offspring fre-
quency is:

By substituting the equivalent values from the set of 
constraints, the AB frequency is found to be equal to 
the sum of the elements of the sixth row of the mating 
matrix, that is to the frequency of type AB in the parents.

Discussion
Feller ([12], p. 132–136) has a section explaining Hardy 
[5] which includes the following definition of random 
mating: ‘If r descendants of the first filial generation 
are chosen at random, then their parents form a ran-
dom sample of size r, with possible repetitions, from the 
aggregate of all possible parental pairs. In other words, 
each descendant is to be regarded as the product of a ran-
dom selection of parents, and all selections are mutually 
independent’. Feller (p. 134) elaborates:

The genotype of an offspring is the result of four inde-
pendent random choices. The genotypes of the two 
parents can be selected in 3 ∙ 3 ways, their genes in 
2 ∙ 2 ways. It is fortunately possible to combine two 
selections and describe the process as one of double 

c66 = 4c12;c77 = 4c13;c88 = 4c14;c99 = 4c15;c10,10 = 4c23;c11,11 = 4c24

c12,12 = 4c25;c13,13 = 4c34;c14,14 = 4c35;c15,15 = 4c45

c67 = 2c1,10;c68 = 2c1,11;c69 = 2c1,12;c6,10 = 2c27;c6,11 = 2c28;c6,12 = 2c29

c78 = 2c1,13;c79 = 2c1,14;c7,10 = 2c36;c7,13 = 2c38;c7,14 = 2c39

c89 = 2c1,15;c8,11 = 2c46;c8,13 = 2c47;c8,15 = 2c49

c9,12 = 2c56;c9,14 = 2c57;c9,15 = 2c58

c10,11 = 2c2,13;c10,12 = 2c2,14;c10,13 = 2c3,11;c10,14 = 2c3,12

c11,12 = 2c2,15;c11,13 = 2c4,10;c11,15 = 2c4,12

c12,14 = 2c5,10;c12,15 = 2c5,11

c13,14 = 2c3,15;c13,15 = 2c4,14;c14,15 = 2c5,13;

c6,13 = c7,11 = c8,10;c6,14 = c7,12 = c9,10;c6,15 = c8,12 = c9,11

c7,15 = c8,14 = c9,13;c10,15 = c11,14 = c12,13

2c12 + c16 + c1,10 + c1,11 + c1,12 + c26 + c27 + c28 + c29+

+(c66 + c67 + c68 + c69 + c6,10 + c6,11 + c6,12)∕2+

+(c7,10 + c7,11 + c7,12 + c8,10 + c8,11 + c8,12 + c9,10 + c9,11 + c9,12)∕2.

Table 1  Examples of two mating matrices by which the same parental frequencies are reproduced among offspring (elements to be 
divided by 1908)

(i) (ii)

AA BB AB Total AA BB AB Total

AA 150 100 174 424 AA 140 128 156 424

BB 100 262 274 636 BB 128 328 180 636

AB 174 274 400 848 AB 156 180 512 848



Page 3 of 5Stark ﻿Hereditas          (2023) 160:19 	

selection thus: the paternal and maternal genes are 
each selected independently and at random from 
the population of all genes carried by males and 
females, respectively, of the parental population.

It seems that the explanation above is Feller’s way of 
interpreting Hardy’s ([5], p. 49) statement: ‘A little mathe-
matics of the multiplication-table type is enough to show 
that in the next generation the numbers will be as

or as p1 : 2q1 : r1 , say.’ [13]. Hardy takes a population 
with a genotypic distribution of whatever kind and pro-
duces the Hardy-Weinberg form in one round of ‘random 
mating’. His next step is directed to the question posed by 
Punnett in 1908 as to why a dominant character should 
not replace a recessive (or Hardy’s ([5], p. 49) conun-
drum: ‘in the absence of counteracting factors, to get 
three brachydactylous persons to one normal’) [13]. Mr. 
Udny Yule contributed to the discussion following Pun-
nett’s presentation. Yule introduced the trait brachydac-
tyly as an example of dominance. Punnett ([14], pp. 9–10) 
describes how this came about and was the reason why 
Hardy’s solution became ‘Hardy’s law’. Hardy [5] pointed 
out that if random mating produced Hardy-Weinberg 
proportions once it could repeat the outcome starting 

from Hardy-Weinberg form. This he put as the criterion 
that the distribution obeys the identity q2

1
= p1r1 . How-

ever, Hardy did not consider whether stability could be 
achieved in any other way, which is the subject of this 
paper. Hardy’s criterion q2

1
= p1r1 does not give any 

insight into the nature of the mating system.
Feller (p. 134) writes: ‘In each of the two selections 

[a gamete from each parent] an A-gene is selected with 
probability p, and, because of the assumed independ-
ence, the probability of an offspring being AA is p2 
[12]. In countless genetical analyses independence is 
assumed and often leads to another inference embod-
ied in Feller’s (p. 135) remark: ‘It follows in particular 
that under conditions of random mating the frequen-
cies of the three genotypes must stand in the ratios 
p2 : 2pq : q2 . This can in turn be used to check the 
assumption of random mating.’

As noted earlier, when resorting to the notion of ran-
dom mating to justify the use of the Hardy-Weinberg 
principle, the appeal is to the apparent simplicity of the 
concept. But, of course, the mating regime expressed in 
the elements {cij} is subject to the same constraints as 
those set out above when mating is at random.

(p+ q)2 : (p+ q)(q + r) : (q + r)2,

In the final section of his paper, Mayo ([15], p. 253) has 
the following comment:

Li [2], followed and elaborated by Stark [6, 7], 
showed that panmixia is not the only breeding struc-
ture that can yield HW proportions so that pan-
mixia is a sufficient but not a necessary condition 
for HWE. However, no natural population is known 
to manifest the other possible breeding structures so 
that it appears unlikely that they need to be consid-
ered in data collection and analysis.

Stark [3] was aware of the fact that Hardy-Weinberg 
proportions can be maintained by non-random mating. 
Table 2 gives the algebraic form of such a mating system 
which is a special case of a general formula given in that 
article. Hardy-Weinberg proportions are maintained by 
putting λ = 0 in the following general form.

In detail, the genotypic proportions are:

The mating frequencies are

where

The model has the property c33 = 4c12 so that the 
parental frequencies are reproduced in offspring. Putting 
ν = 0 yields mating frequencies usually called random 
mating but more properly should be called proportionate 
frequencies.

Edwards ([16], p. 1146) writes: ‘Hardy-Weinberg 
equilibrium is, of course, a mathematical result of 
embarrassing simplicity… What is amusing is the irony 
of so great a mathematician having delivered and pub-
lished so simple an answer’. Edwards ([16], p. 1149) 
remarks: ‘That such a slight problem should have found 
its way to so great a mathematician as Hardy is an 
example of the social network within and between the 

G1 = q
2 + �pq;G2 = p

2 + �pq;G3

= 2pq(1 − �);q = (2G1 + G3)∕2;p = 1 − q

cij = GiGj(1+ µdidj/S + νeiej/T )

µ = 2�/(1+ �); d1 = −2p; d2 = 2q; d3 = q − p; e1 = −p(1− �)/(q + �p);
e2 = q(1− �)/(p+ �q); e3 = 1; S = 2pq(1+ �);T = pq(1− �)(1+ �)/((q + �p)(p+ �q))

Table 2  Mating proportions reproducing offspring with Hardy-
Weinberg frequencies

AA BB AB Total

AA q2(q2 + νp2) p2q2(1 + ν) 2pq2(q – νp) q2

BB p2q2(1 + ν) p2(p2 + νq2) 2p2q(p – νq) p2

AB 2pq2(q – νp) 2p2q(p – νq) 4p2q2(1 + ν) 2pq
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colleges of Cambridge.’ It turns out that the problem is 
not as slight as it appears to Edwards. Perhaps defer-
ence to Hardy explains why Feller and countless others 
have overlooked a basic facet of the problem. Edwards 
does not cite C. C. Li [2] or Stark [6]. As noted above, 
Crow ([1], pp. 475–476) comments that random mat-
ing is a sufficient, not a necessary, condition for H-W 
ratios.

Li ([2], pp. 736–737) states: ‘An infinite number of pat-
terns of deviations from random mating exists for auto-
somal loci that would make a population pseudo-random 
mating. This could be a contributing factor to the robust-
ness of the Hardy-Weinberg law. The usual “tests for ran-
dom mating” are actually only tests for random union 
of gametes which yields the Hardy-Weinberg law, what-
ever the mating pattern in the population. The situation 
described in this report makes the study of the mating 
pattern of a population a worthy subject.’ [2].

The reason why the Hardy-Weinberg model contin-
ues to be misunderstood may lie in the confusing termi-
nology used to define it. It is a deterministic model and 
should be described in terms of proportions rather than 
probability. However, when ‘random mating’ is intro-
duced it conjures up notions of probability and stochastic 
models. This confusion is evident in Feller’s struggle to 
explain the Hardy-Weinberg model.

Diaconis ([17], p. 2) writes: ‘Curiously, Hardy’s most 
well known work outside mathematics has probabilistic 
underpinnings. … Hardy’s “back of the envelope” calcula-
tion is carefully worded with plenty of sensible caveats’. 
Between these two sentences Diaconis gives a brief sum-
mary of Hardy’s explanation of how Hardy-Weinberg 
proportions can be generated and maintained. This is 
an example of how a deterministic model is viewed as a 
stochastic model. Hardy’s phrase ‘a little mathematics of 
the multiplication-table type’ is not a statement about 
probabilities but about proportionate mating frequencies 
which should not be called ‘random mating’.

Weinberg ([18], p. 378) writes: ‘Ganz anders ist das 
Verhältnis, wenn man die MENDEL’sche Vererbung 
unter dem Einfluꞵ der Panmixie betrachtet’. As in Hardy, 
the notion of random mating is applied to a determinis-
tic outcome. Clearly it will be difficult to reform termi-
nology. Fisher ([19], p. 54) writes: ‘It is well known that 
if mating were at random the frequencies, P, 2Q and R 
of the three possible genotypes would be related so that 
Q2 = PR’.

Emery’s Elements of Medical Genetics has a typical 
demonstration of the Hardy-Weinberg principle [20]. 
FIG. 7.2 (page 92) has the caption “Punnett’s square 
showing the frequencies of the different matings in the 
second generation”. The Hardy-Weinberg frequencies of 
female and male parents [p2, 2pq, q2] are displayed on the 

margins. The mating proportions are simply the products 
of the marginal frequencies. The demonstration contin-
ues to derive offspring frequencies, which are the same as 
those of the parent, by applying Mendel’s law. “Non-ran-
dom mating” is listed as a “potentially disturbing factor”.

Hardy indicated how Hardy-Weinberg proportions 
could be reached and sustained in an idealized setting. 
One could say that it is an unattainable ideal. He did 
not pursue the question as to whether there is any way, 
other than by ‘random mating’, that stationarity can be 
achieved.

Up to this point there is no appeal to chance which 
enters the picture when the biologist seeks to apply the 
principle to a population. Matings occur perhaps by 
chance and gametes are transmitted at least partly by 
chance. The probability calculus and statistical theory are 
useful in deciding whether the Hardy-Weinberg model 
can be used for analytical and predictive purposes.

Weinberg found the model useful for studying the 
human propensity to produce twins. An account of his 
life and work is given by Sperlich and Früh [21].
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